
I. Language-Specific Conventions: 

• Python: Adhere to PEP 8 (https://www.python.org/dev/peps/pep-0008/) with the 
following additions/modifications: 

◦ Maximum line length: 120 characters (for improved readability on wider 
screens). 

◦ Use type hints (https://docs.python.org/3/library/typing.html) extensively for 
function arguments, return values, and variable declarations. This is crucial for 
understanding data flow in API orchestrations. 

◦ Docstrings should follow the Google Style Guide (https://google.github.io/
styleguide/pyguide.html#38-comments-and-docstrings) for consistency and 
automated documentation generation. 

• JavaScript (if applicable for frontend/UI components): Adhere to a widely-used style 
guide like the Airbnb JavaScript Style Guide (https://github.com/airbnb/javascript) with 
consistent use of semicolons and preferably using a linter like ESLint. 

II. Naming Conventions: 

• Variables: 

◦ Use descriptive names in snake_case (e.g., api_response, user_data, 
request_payload). 

◦ Avoid single-letter variable names (except for very short loop counters). 

◦ For AI/ML related variables, include prefixes like model_, feature_, or 
prediction_ (e.g., model_weights, feature_vector). 

• Functions/Methods: 

◦ Use descriptive names in snake_case (e.g., process_api_data, 
validate_user_input, predict_api_latency). 

◦ For functions related to API interactions, include the API name or a clear 
abbreviation (e.g., get_user_from_auth_api, parse_google_maps_response). 

• Classes: 

◦ Use PascalCase (e.g., APIOrchestrator, DataManager, PredictionModel). 

◦ Classes related to specific APIs should include the API name (e.g., 
GoogleMapsAPIClient). 

• Files: 

◦ Use lowercase with underscores or hyphens (e.g., api_orchestration.py, 
data_processing_utils.py). 

◦ For modules related to specific APIs, include the API name (e.g., 
google_maps_integration.py). 

• Constants: 

◦ Use uppercase with underscores (e.g., MAX_RETRIES, API_TIMEOUT). 

III. Code Structure and Organization: 

• Modular Design: Break down complex orchestrations into smaller, reusable functions 
and classes. 

• API Interactions: Encapsulate API calls within dedicated functions or classes to 
promote code reusability and maintainability. Handle API authentication, error 
handling, and data transformation within these modules. 

• AI/ML Components: Separate AI/ML model training, prediction, and evaluation logic 
into dedicated modules. Use established ML frameworks (e.g., TensorFlow, PyTorch) 
and follow their best practices. 

• Error Handling: Implement robust error handling using try-except blocks. Log errors 
with detailed information (including timestamps, API request details, and relevant 
context). Avoid generic except clauses; catch specific exceptions whenever possible. 

• Logging: Use a logging library (e.g., Python's logging module) for consistent logging 
throughout the application. Log important events, errors, and performance metrics. 

https://www.google.com/url?sa=E&source=gmail&q=https://www.python.org/dev/peps/pep-0008/
https://www.google.com/url?sa=E&source=gmail&q=https://docs.python.org/3/library/typing.html
https://www.google.com/search?q=https://google.github.io/styleguide/pyguide.html%2338-comments-and-docstrings
https://www.google.com/search?q=https://google.github.io/styleguide/pyguide.html%2338-comments-and-docstrings
https://www.google.com/search?q=https://google.github.io/styleguide/pyguide.html%2338-comments-and-docstrings
https://www.google.com/url?sa=E&source=gmail&q=https://github.com/airbnb/javascript


• Configuration: Store configuration settings (API keys, endpoints, model paths) in a 
separate configuration file (e.g., .ini, .yaml, or environment variables) to facilitate easy 
modification without code changes. 

IV. Documentation: 

• Docstrings: Write comprehensive docstrings for all functions, classes, and modules, 
explaining their purpose, arguments, return values, and any exceptions they might 
raise. Use the Google Style Guide for docstrings. 

• Comments: Use comments sparingly to explain complex logic or non-obvious code. 
Avoid redundant comments that simply restate the code. 

• README: Maintain a clear and up-to-date README file for the project, explaining its 
purpose, architecture, dependencies, and how to run it. 

• API Documentation: Generate API documentation automatically from the code (e.g., 
using Sphinx or similar tools). 

V. Version Control: 

• Use Git for version control. 
• Follow a clear branching strategy (e.g., Gitflow). 
• Write meaningful commit messages that describe the changes made. 

VI. Testing: 

• Write unit tests for all core functionalities, including API interactions, AI/ML 
components, and orchestration logic. Use a testing framework like pytest (Python) or 
Jest (JavaScript). 

• Aim for high test coverage. 
• Implement integration tests to verify the interaction between different components 

VII. Code Reviews: 

• Conduct thorough code reviews before merging any changes into the main branch. 
• Focus on code quality, adherence to conventions, and potential issues. 

VIII. TEDDi Specific Conventions: 

• API Orchestration Flows: Clearly document the orchestration logic, including the 
sequence of API calls, data transformations, and error handling strategies. Consider 
using visual diagrams or flowcharts to illustrate complex orchestrations. 

• AI Model Integration: Document the AI models used, their training data, performance 
metrics, and how they are integrated into the orchestration process. 

• Data Transformation: Clearly define the data transformation steps between API calls. 
Document the format of the input and output data for each transformation. 

• Performance Optimization: Document any performance optimization techniques 
used, such as caching, asynchronous calls, or load balancing. 

IX. Enforcement: 

• Use linters and formatters (e.g., flake8, mypy, autopep8 for Python; ESLint, Prettier for 
JavaScript) to automatically enforce coding style. 

• Integrate these tools into the development workflow (e.g., as part of the CI/CD 
pipeline).


